A large-scale evaluation of computational protein function prediction P Radivojac, WT Clark, TR Oron, AM Schnoes, T Wittkop, A Sokolov, ... Nature methods 10 (3), 221-227, 2013 | 872 | 2013 |
Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood SA Berger, D Krompass, A Stamatakis Systematic biology 60 (3), 291-302, 2011 | 454 | 2011 |
Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice AJ Aberer, D Krompass, A Stamatakis Systematic biology 62 (1), 162-166, 2013 | 320 | 2013 |
Type-constrained representation learning in knowledge graphs D Krompaß, S Baier, V Tresp International semantic web conference, 640-655, 2015 | 187 | 2015 |
Tensor-train recurrent neural networks for video classification Y Yang, D Krompass, V Tresp International Conference on Machine Learning, 3891-3900, 2017 | 177 | 2017 |
Homology-based inference sets the bar high for protein function prediction T Hamp, R Kassner, S Seemayer, E Vicedo, C Schaefer, D Achten, F Auer, ... BMC bioinformatics 14 (3), 1-10, 2013 | 55 | 2013 |
Predicting sequences of clinical events by using a personalized temporal latent embedding model C Esteban, D Schmidt, D Krompaß, V Tresp 2015 International Conference on Healthcare Informatics, 130-139, 2015 | 49 | 2015 |
Predicting sequences of clinical events by using a personalized temporal latent embedding model C Esteban, D Schmidt, D Krompaß, V Tresp 2015 International Conference on Healthcare Informatics, 130-139, 2015 | 49 | 2015 |
Non-negative tensor factorization with rescal D Krompaß, M Nickel, X Jiang, V Tresp Tensor Methods for Machine Learning, ECML workshop, 1-10, 2013 | 46 | 2013 |
Predicting the co-evolution of event and knowledge graphs C Esteban, V Tresp, Y Yang, S Baier, D Krompaß 2016 19th International Conference on Information Fusion (FUSION), 98-105, 2016 | 44 | 2016 |
Querying factorized probabilistic triple databases D Krompaß, M Nickel, V Tresp International Semantic Web Conference, 114-129, 2014 | 33 | 2014 |
Large-scale factorization of type-constrained multi-relational data D Krompaß, M Nickel, V Tresp 2014 International Conference on Data Science and Advanced Analytics (DSAA …, 2014 | 24 | 2014 |
RogueNaRok: An efficient and exact algorithm for rogue taxon identification AJ Aberer, D Krompaß, A Stamatakis Heidelberg Institute for Theoretical Studies: Exelixis-RRDR-2011–10, 2011 | 23 | 2011 |
Learning with memory embeddings V Tresp, C Esteban, Y Yang, S Baier, D Krompaß arXiv preprint arXiv:1511.07972, 2015 | 22 | 2015 |
Exploiting latent embeddings of nominal clinical data for predicting hospital readmission D Krompaß, C Esteban, V Tresp, M Sedlmayr, T Ganslandt KI-Künstliche Intelligenz 29 (2), 153-159, 2015 | 19 | 2015 |
Few-shot one-class classification via meta-learning A Frikha, D Krompaß, HG Köpken, V Tresp Proceedings of the AAAI Conference on Artificial Intelligence 35 (8), 7448-7456, 2021 | 10 | 2021 |
Towards a new science of a clinical data intelligence V Tresp, S Zillner, MJ Costa, Y Huang, A Cavallaro, PA Fasching, A Reis, ... arXiv preprint arXiv:1311.4180, 2013 | 8 | 2013 |
Ensemble solutions for link-prediction in knowledge graphs D Krompaß, V Tresp Proceedings of the 2nd Workshop on Linked Data for Knowledge Discovery …, 2015 | 6 | 2015 |
Probabilistic latent-factor database models D Krompaß, X Jiang, M Nickel, V Tresp Linked Data for Knowledge Discovery, 74, 2014 | 5 | 2014 |
Method and apparatus for determining a network topology of a hierarchical network D Beyer, D Krompaß, S Spieckermann US Patent 10,547,513, 2020 | 2 | 2020 |