Predictive business process monitoring with LSTM neural networks N Tax, I Verenich, M La Rosa, M Dumas Advanced Information Systems Engineering: 29th International Conference …, 2017 | 618 | 2017 |
Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring I Verenich, M Dumas, ML Rosa, FM Maggi, I Teinemaa ACM Transactions on Intelligent Systems and Technology (TIST) 10 (4), 1-34, 2019 | 204 | 2019 |
Predictive business process monitoring via generative adversarial nets: the case of next event prediction F Taymouri, ML Rosa, S Erfani, ZD Bozorgi, I Verenich Business Process Management: 18th International Conference, BPM 2020 …, 2020 | 117 | 2020 |
Complex symbolic sequence clustering and multiple classifiers for predictive process monitoring I Verenich, M Dumas, M La Rosa, FM Maggi, C Di Francescomarino Business Process Management Workshops: BPM 2015, 13th International …, 2016 | 79 | 2016 |
Predicting process performance: A white‐box approach based on process models I Verenich, M Dumas, M La Rosa, H Nguyen Journal of Software: Evolution and Process 31 (6), e2170, 2019 | 48 | 2019 |
White-box prediction of process performance indicators via flow analysis I Verenich, H Nguyen, M La Rosa, M Dumas Proceedings of the 2017 International Conference on Software and System …, 2017 | 44 | 2017 |
Minimizing overprocessing waste in business processes via predictive activity ordering I Verenich, M Dumas, M La Rosa, FM Maggi, C Di Francescomarino Advanced Information Systems Engineering: 28th International Conference …, 2016 | 31 | 2016 |
Nirdizati: A web-based tool for predictive process monitoring K Jorbina, A Rozumnyi, I Verenich, C Di Francescomarino, ... Proceedings of the BPM Demo Track and BPM Dissertation Award (CEUR Workshop …, 2017 | 17 | 2017 |
A general framework for predictive business process monitoring I Verenich Proceedings of CAiSE 2016 Doctoral Consortium, 1-9, 2016 | 17 | 2016 |
Explainable predictive monitoring of temporal measures of business processes I Verenich Queensland University of Technology, 2018 | 15 | 2018 |
Predictive process monitoring in apromore I Verenich, S Moškovski, S Raboczi, M Dumas, M La Rosa, FM Maggi Information Systems in the Big Data Era: CAiSE Forum 2018, Tallinn, Estonia …, 2018 | 12 | 2018 |
Tell me what’s ahead? predicting remaining activity sequences of business process instances I Verenich, M Dumas, M La Rosa, FM Maggi, D Chasovskyi, A Rozumnyi | 5 | 2016 |
Combining propensity and influence models for product adoption prediction I Verenich, R Kikas, M Dumas, D Melnikov Proceedings of the 2015 IEEE/ACM International Conference on Advances in …, 2015 | 2 | 2015 |
Планарные и координатные трассировщики на практике ИЮ Веренич, ЮВ Лысенко Вестник Южно-Уральского государственного университета. Серия: Компьютерные …, 2011 | 2 | 2011 |
Predicting process performance: A white-box approach I Verenich, M Dumas, M La Rosa, H Nguyen, AHM ter Hofstede | | 2017 |
Predictive business process monitoring with LSTMs N Tax, I Verenich, M La Rosa, M Dumas Benelearn 2017: Proceedings of the Twenty-Sixth Benelux Conference on …, 0 | | |
A framework for crowdrating quality evaluation in the statistical machine translation D Chasovskyi, I Verenich | | |